Monday, November 14, 2016

Promedio Móvil Con Tendencia Lineal


Cuando se calcula una media móvil en ejecución, colocar el promedio en el período de tiempo medio tiene sentido En el ejemplo anterior se calculó el promedio de los primeros 3 períodos de tiempo y lo colocó al lado del período 3. Podríamos haber colocado el promedio en el medio de la Intervalo de tiempo de tres períodos, es decir, al lado del período 2. Esto funciona bien con períodos de tiempo impares, pero no tan bueno para incluso períodos de tiempo. Entonces, dónde colocaríamos el primer promedio móvil cuando M 4 Técnicamente, el promedio móvil caería en t 2,5, 3,5. Para evitar este problema, suavizar las MA con M 2. Así, suavizar los valores suavizados Si la media de un número par de términos, tenemos que suavizar los valores suavizados La siguiente tabla muestra los resultados utilizando M 4.Moving Media La media móvil Técnica El indicador muestra el valor medio del precio del instrumento durante un cierto período de tiempo. Cuando se calcula la media móvil, se calcula la media del precio del instrumento para este período de tiempo. A medida que el precio cambia, su promedio móvil aumenta o disminuye. Hay cuatro tipos diferentes de promedios móviles: Simple (también conocido como Aritmética), Exponencial. Suavizado y ponderado. El Promedio móvil puede calcularse para cualquier conjunto de datos secuenciales, incluyendo precios de apertura y cierre, precios más altos y más bajos, volumen de operaciones o cualquier otro indicador. A menudo es el caso cuando se usan promedios móviles dobles. Lo único en que los promedios móviles de diferentes tipos divergen considerablemente entre sí, es cuando los coeficientes de peso, que se asignan a los últimos datos, son diferentes. En el caso de que estamos hablando de Media móvil simple. Todos los precios del período de tiempo en cuestión son iguales en valor. La media móvil exponencial y la media móvil ponderada lineal atribuyen más valor a los precios más recientes. La forma más común de interpretar el precio promedio móvil es comparar su dinámica con la acción del precio. Cuando el precio del instrumento sube por encima de su promedio móvil, aparece una señal de compra, si el precio cae por debajo de su media móvil, lo que tenemos es una señal de venta. Este sistema de comercio, que se basa en la media móvil, no está diseñado para proporcionar la entrada en el mercado justo en su punto más bajo, y su salida a la derecha en el pico. Permite actuar de acuerdo con la siguiente tendencia: comprar poco después de que los precios lleguen al fondo, y vender poco después de que los precios hayan alcanzado su punto máximo. Los promedios móviles también pueden aplicarse a los indicadores. Es ahí donde la interpretación de las medias móviles de los indicadores es similar a la interpretación de los promedios móviles de los precios: si el indicador sube por encima de su media móvil, es probable que continúe el movimiento del indicador ascendente: si el indicador cae por debajo de su promedio móvil, Significa que es probable que siga bajando. Estos son los tipos de promedios móviles en el gráfico: Promedio móvil simple (SMA) Promedio móvil exponencial (EMA) Promedio móvil suavizado (SMMA) Promedio móvil ponderado lineal (LWMA) Puede probar las señales comerciales de este indicador creando un Asesor experto En MQL5 Asistente. Cálculo Promedio móvil simple (SMA) Simple, en otras palabras, el promedio móvil aritmético se calcula sumando los precios del cierre del instrumento durante un cierto número de períodos individuales (por ejemplo, 12 horas). Este valor se divide entonces por el número de tales períodos. SMA SUM (CERRAR (i), N) / N SUM SUM CERRAR (i) período actual precio de cierre N número de períodos de cálculo. Promedio móvil exponencial (EMA) La media móvil suavizada exponencialmente se calcula sumando una cuota determinada del precio de cierre actual al valor anterior de la media móvil. Con los promedios móviles suavizados exponencialmente, los últimos precios de cierre son de mayor valor. La media móvil exponencial del P por ciento se verá así: EMA (CERRAR (i) P) (EMA (i - 1) (1 - P)) CERRAR (i) De un período anterior P el porcentaje de utilización del valor del precio. Promedio móvil suavizado (SMMA) El primer valor de esta media móvil suavizada se calcula como la media móvil simple (SMA): SUM1 SUM (CLOSE (i), N) La segunda media móvil se calcula de acuerdo con esta fórmula: SMMA (i) (I) (N) () () () () NMA (i - 1) ) / N SUM sum SUM1 suma total de los precios de cierre para N periodos se cuenta desde la barra anterior PREVSUM suma suavizada de la barra anterior SMMA (i-1) media móvil suavizada de la barra anterior SMMA (i) media móvil suavizada de la barra Barra actual (excepto la primera) CERRAR (i) precio de cierre actual N período de suavizado. Después de conversiones aritméticas, la fórmula puede simplificarse: SMMA (i) (SMMA (i - 1) (N - 1) CERRAR (i)) / N Promedio móvil ponderado lineal (LWMA) En el caso de la media móvil ponderada, Tiene más valor que los datos más antiguos. La media móvil ponderada se calcula multiplicando cada uno de los precios de cierre dentro de la serie considerada por un cierto coeficiente de ponderación: LWMA SUM (CLOSE (i) i, N) Suma total de los coeficientes de peso N suavizado period. Choosing la mejor línea de tendencia para sus datos Cuando desea agregar una línea de tendencia a un gráfico en Microsoft Graph, puede elegir cualquiera de los seis diferentes tipos de tendencia / regresión. El tipo de datos que tiene determina el tipo de línea de tendencia que debe utilizar. Confiabilidad de línea de tendencia Una línea de tendencia es más confiable cuando su valor R-cuadrado está en o cerca de 1. Cuando se ajusta una línea de tendencia a sus datos, Graph calcula automáticamente su valor R-cuadrado. Si lo desea, puede mostrar este valor en su gráfico. Una línea de tendencia lineal es una línea recta de mejor ajuste que se utiliza con conjuntos de datos lineales simples. Sus datos son lineales si el patrón en sus puntos de datos se asemeja a una línea. Una línea de tendencia lineal por lo general muestra que algo está aumentando o disminuyendo a un ritmo constante. En el ejemplo siguiente, una línea de tendencia lineal muestra claramente que las ventas de refrigeradores han aumentado constantemente durante un período de 13 años. Observe que el valor R-cuadrado es 0.9036, que es un buen ajuste de la línea a los datos. Una línea de tendencia logarítmica es una línea curva mejor ajustada que es más útil cuando la tasa de cambio en los datos aumenta o disminuye rápidamente y luego se nivela. Una línea de tendencia logarítmica puede usar valores negativos y / o positivos. El siguiente ejemplo usa una línea de tendencia logarítmica para ilustrar el crecimiento poblacional predicho de animales en un área de espacio fijo, donde la población nivelada como espacio para los animales disminuyó. Tenga en cuenta que el valor R-cuadrado es 0.9407, que es un ajuste relativamente bueno de la línea a los datos. Una línea de tendencia polinómica es una línea curva que se usa cuando los datos fluctúan. Es útil, por ejemplo, para analizar ganancias y pérdidas en un gran conjunto de datos. El orden del polinomio puede determinarse por el número de fluctuaciones en los datos o por el número de curvas (colinas y valles) que aparecen en la curva. Una línea de tendencia polinomial de orden 2 generalmente tiene sólo una colina o valle. El orden 3 generalmente tiene una o dos colinas o valles. La orden 4 generalmente tiene hasta tres. El siguiente ejemplo muestra una línea de tendencia polinomial de Orden 2 (una colina) para ilustrar la relación entre la velocidad y el consumo de gasolina. Observe que el valor R-cuadrado es 0.9474, que es un buen ajuste de la línea a los datos. Una línea de tendencia de potencia es una línea curva que se utiliza mejor con conjuntos de datos que comparan las mediciones que aumentan a una velocidad específica, por ejemplo, la aceleración de un coche de carreras a intervalos de un segundo. No puede crear una línea de tendencia de energía si sus datos contienen valores cero o negativos. En el ejemplo siguiente, los datos de aceleración se muestran trazando la distancia en metros por segundos. La línea de tendencia de potencia demuestra claramente la creciente aceleración. Tenga en cuenta que el valor R-cuadrado es 0.9923, que es un ajuste casi perfecto de la línea a los datos. Una línea de tendencia exponencial es una línea curva que es más útil cuando los valores de los datos suben o bajan a tasas cada vez más altas. No puede crear una línea de tendencia exponencial si sus datos contienen valores cero o negativos. En el ejemplo siguiente, se utiliza una línea de tendencia exponencial para ilustrar la cantidad decreciente de carbono 14 en un objeto a medida que envejece. Tenga en cuenta que el valor R-cuadrado es 1, lo que significa que la línea se ajusta perfectamente a los datos. Una línea de tendencia de media móvil suaviza las fluctuaciones de los datos para mostrar un patrón o una tendencia más claramente. Una línea de tendencia de media móvil utiliza un número específico de puntos de datos (establecidos por la opción Período), los promedia y utiliza el valor promedio como un punto en la línea de tendencia. Si Period se establece en 2, por ejemplo, el promedio de los dos primeros puntos de datos se utiliza como el primer punto de la línea de tendencia de media móvil. El promedio de los puntos de datos segundo y tercero se utiliza como el segundo punto en la línea de tendencia, y así sucesivamente. En el ejemplo siguiente, una línea de tendencia de media móvil muestra un patrón en el número de viviendas vendidas en un período de 26 semanas.

No comments:

Post a Comment